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Common wisdom

« Optimisation problems in WSNs are non-convex.

* Gradient based optimization method converge to
locally optimal solutions.

* In practice, heuristics can provide “near-optimal”
solutions.

« Computing global optimality guarantees is impractical.
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Common wisdom

« Optimisation problems in WSNs are non-convex.

* Gradient based optimization method converge to
locally optimal solutions.

* In practice, heuristics can provide “near-optimal”
solutions.

« Computing global optimality guarantees is impractical.

This is not true.
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Summary @

* Design and control problems in water networks
* Global optimality bounds
* Polyhedral relaxations

* Numerical examples
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problems in WSNs

« Optimal pipe diameter sizing

Raghunathan, A.U. (2013) Global Optimization of Nonlinear Network Design. SIAM
Journal on Optimization. 23 (1), 268 —-295.

« Optimal valve placement and operation

Peccr, F., Abraham, E., & Stoianov, [. (2018) Global optimality bounds for the
placement of control valves in water supply networks. Optimization and Engineering.
» Optimal pressure control

Wright, R., Abraham, E., Parpas, P, & Storanov, [. (2015) Control of water
distribution networks with dynamic DMA topology using strictly feasible sequential
convex programming. Water Resources Research. 51 (12), 7925 -7 741.

« Optimal pump scheduling

Menke, R., Abraham, E., Parpas, P., & Stoianov, [. (2015) Exploring Optimal Pump
Scheduling in Water Distribution Networks with Branch and Bound. Water Resources
Management. 30 (14), 5333 —-5349.



Optimisation
problems in WSNs

 Continuous variables can
represent flows, hydraulic
heads, control inputs

*Discrete variables can
represent diameter sizes, valve
locations, or pump's status
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minimize  f(z, 2)

subject to g(z) =0
(x,2) €C
2 € L

* f(-)is a convex objective function.
» C is a convex set.
. g() is a non-linear function.
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g(x) L 0 Head difference
i —

Flow

* Represent the relation
between head difference and
flow across a pipe or valve
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gi (33) — 0 Head difference

. Flow
* Represent the relation

between head difference and

flow across a pump
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minimize  f(x, 2)

subject to g(x) =0
(x,2) € C
2 € L

Computing the optimal value ispNiP-hard.
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minimize  f(x, 2)

subject to g(x) =0
(x,2) € C
2 € L

Computing the optimal value ispNiP-hard.

Can we compute a good quality feasible solution with a
certified sub-optimality bound?
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Solution method

Aim: Compute a feasible solution with a certified bound
to the level sub-optimality

Ingredients:

* A method to compute a lower bound to the optimal value of the non-
convex MINLP.

* A method to compute a feasible solution, providing an upper bound to
the optimal value of the non-convex MINLP.

LB < p* < UB
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Pipe/Valve Pump
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Pipe/Valve Pump
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subject to Az <b relaxation!
(x,2) € C
z €7

» Solve the convex MIP relaxation.

* The optimal value provides a lower bound to the optimal value of the
original problem:

LB < p*
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Upper bounding :

* Fix the integer variables to the values computed solving the convex MIP
relaxation:

minimize  f(x, 2)
subject to g(x) =0
(x,2) € C

» Solve the resulting non-convex continuous optimization problem using a
gradient based method.

» The computed solution provides an upper bound to the optimal value of
the original non-convex MINLP:

p* < UB
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Head
* To improve the computed lower bounds, we  (ifference
tighten the polyhedral relaxations.

e This is done by tightening upper and lower
bounds on the flow variables.

* The iterative procedure stops when no more Head difference A
progress is made.
, Flow
* Details: Pecci, F, Abraham, E., & Stoianov, I. (2018) e
Global optimality bounds for the placement of control

valves in water supply networks. Optimization and
Engineering.
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« Aim: minimize Average Zone Pressure
(AZP)

 Simultaneously optimise placement

and operation of pressure control
valves

Pecci, F, Abraham, E., & Stoianov, I. (2018) Global optimality bounds for the placement of control valves in
water supply networks. Optimization and Engineering.
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WSNSs
* Continuous variables Non-convex Mixed
* Node hydraulic heads Integer Nonlinear
* Pipe flow rates Program (MINLP)

* Pressure control valve settings

* Discrete variables
* Binary variables used to model the placement of valves

 Non-convex constraints
* Frictional head losses



Case studies
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Optimal placement and control of 1 to 5 valves in

PescaraNet

365 continuous variables
198 binary variables
1591 linear constraints

99 non-convex terms

Net25

3192 continuous variables
74 binary variables
9762 linear constraints

88 non-convex terms

>

-




Numerical results
Comparison with solvers BARON (V18.8.23) and SCIP (v3.2.1)

Max Cpu time = 7200 s
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Average CPU times:

* Bound-Tightening algorintm: 102 s
« BARON: 7200 s

« SCIP: 7200s
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water network

BLWFnet
e« 28251 continuous variables
« 2620 binary variables &33

96599 linear constraints
e 7107 non-convex terms
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Bounds on optimality gap comparable to the level of uncertainty experienced
within hydraulic models of operational water networks!
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Max Cpu time = 86400 s (1 day)

No. of CPU LB UuB Gap

valves time (s)

1 3745 41.73 47 .41 13.6 %

2 4803 35.19 39.31 11.6 %

3 40350 32.44 36.19 11.5 %
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» Optimisation problems in WSNs are non-convex, but the non-
convexities are mild.

 Using polyhedral relaxations, we can build convex relaxations of
the original non-convex problems.

* We implement a bound tightening method to improve the lower
bounds computed solving the convex relaxations.

» The proposed method yields good quality feasible solutions, with
a certified bound on the level of sub-optimality.

* Our simple approach outperforms state-of-the-art global
optimisation solvers, for the considered case studies.
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