

1st-4th September 2019 University of Exeter, UK

Tight convex relaxations for optimal design and control problems in water supply networks

Filippo Pecci^a, Edo Abraham^b, and Ivan Stoianov^a ^aImperial College London ^bTU Delft

InfraSense Labs

Common wisdom

17th International Computing & Control for the Water Industry Conference

^{or} 1st-4th September 2019 University of Exeter, UK

- Optimisation problems in WSNs are non-convex.
- Gradient based optimization method converge to locally optimal solutions.
- In practice, heuristics can provide "near-optimal" solutions.
- Computing global optimality guarantees is impractical.

Common wisdom

17th International Computing & Control for the Water Industry Conference

^{or} 1st-4th September 2019 University of Exeter, UK

- Optimisation problems in WSNs are non-convex.
- Gradient based optimization method converge to locally optimal solutions.
- In practice, heuristics can provide "near-optimal" solutions.
- Computing global optimality guarantees is impractical.

This is not true.

R 1st-4th September 2019 University of Exeter, UK

- Design and control problems in water networks
- Global optimality bounds
- Polyhedral relaxations
- Numerical examples

Optimisation problems in WSNs

17th International Computing & Control for the Water Industry Conference

^{°r} 1st-4th September 2019 University of Exeter, UK

Optimal pipe diameter sizing

Raghunathan, A.U. (2013) Global Optimization of Nonlinear Network Design. SIAM Journal on Optimization. 23 (1), 268–295.

Optimal valve placement and operation

Pecci, F., Abraham, E., & Stoianov, I. (2018) Global optimality bounds for the placement of control valves in water supply networks. Optimization and Engineering.

Optimal pressure control

Wright, R., Abraham, E., Parpas, P., & Stoianov, I. (2015) Control of water distribution networks with dynamic DMA topology using strictly feasible sequential convex programming. Water Resources Research. 51 (12), 9925–9941.

Optimal pump scheduling

Menke, R., Abraham, E., Parpas, P., & Stoianov, I. (2015) Exploring Optimal Pump Scheduling in Water Distribution Networks with Branch and Bound. Water Resources Management. 30 (14), 5333–5349.

Optimisation problems in WSNs

17th International Computing & Control for the Water Industry Conference

 $\stackrel{\scriptstyle \mathsf{or}}{\mathbf{R}}$ 1st-4th September 2019 University of Exeter, UK

• Continuous variables can represent flows, hydraulic heads, control inputs

•Discrete variables can represent diameter sizes, valve locations, or pump's status minimize f(x, z)subject to g(x) = 0 $(x, z) \in C$ $z \in \mathbb{Z}$

- $f(\cdot)$ is a convex objective function.
- \mathcal{C} is a convex set.
- $g(\cdot)$ is a non-linear function.

Non-convex constraints

 $g_i(x) = 0$

17th International Computing & Control for the Water Industry Conference

R 1st-4th September 2019 University of Exeter, UK

• Represent the relation between head difference and flow across a pipe or valve

Non-convex constraints

17th International Computing & Control for the Water Industry Conference

1st-4th September 2019 University of Exeter, UK

Flow

Represent the relation
between head difference and
flow across a pump

R 1st-4th September 2019 University of Exeter, UK

Non-convex MINLP

minimize
$$f(x, z)$$

subject to $g(x) = 0$
 $(x, z) \in C$
 $z \in \mathbb{Z}$

Computing the optimal value

ispN*P-hard.

R 1st-4th September 2019 University of Exeter, UK

Non-convex MINLP

minimize
$$f(x, z)$$

subject to $g(x) = 0$
 $(x, z) \in C$
 $z \in \mathbb{Z}$

Computing the optimal value is $p^{\text{*}}$ P-hard.

Can we compute a good quality feasible solution with a certified sub-optimality bound?

Solution method

17th International Computing & Control for the Water Industry Conference

R 1st-4th September 2019 University of Exeter, UK

<u>**Aim</u>**: Compute a feasible solution with a certified bound to the level sub-optimality</u>

Ingredients:

- A method to compute a lower bound to the optimal value of the nonconvex MINLP.
- A method to compute a feasible solution, providing an upper bound to the optimal value of the non-convex MINLP.

$$LB \le p^* \le UB$$

Polyhedral relaxations

17th International Computing & Control for the Water Industry Conference

1st-4th September 2019 University of Exeter, UK

Pipe/Valve

Polyhedral relaxations

17th International Computing & Control for the Water Industry Conference

1st-4th September 2019 University of Exeter, UK

Pipe/Valve

Pump

Lower bounding

17th International Computing & Control for the Water Industry Conference

R 1st-4th September 2019 University of Exeter, UK

minimize f(x, z)subject to $Ax \leq b$ $(x, z) \in C$ $z \in \mathbb{Z}$

It's a convex MIP relaxation!

- Solve the convex MIP relaxation.
- The optimal value provides a lower bound to the optimal value of the original problem:

$$LB \le p^*$$

ER 1st-4th September 2019 University of Exeter, UK

• Fix the integer variables to the values computed solving the convex MIP relaxation:

minimize
$$f(x, \hat{z})$$

subject to $g(x) = 0$
 $(x, \hat{z}) \in C$

- Solve the resulting non-convex continuous optimization problem using a gradient based method.
- The computed solution provides an upper bound to the optimal value of the original non-convex MINLP:

$$p^* \leq \text{UB}$$

Bound tightening

- To improve the computed lower bounds, we tighten the polyhedral relaxations.
- This is done by tightening upper and lower bounds on the flow variables.
- The iterative procedure stops when no more progress is made.
- Details: Pecci, F., Abraham, E., & Stoianov, I. (2018) Global optimality bounds for the placement of control valves in water supply networks. Optimization and Engineering.

TER 1st-4th September 2019 University of Exeter, UK

Design for Control of WSNs

17th International Computing & Control for the Water Industry Conference

1st-4th September 2019 University of Exeter, UK

- <u>Aim</u>: minimize Average Zone Pressure (AZP)
- Simultaneously optimise placement and operation of pressure control valves

Pecci, F., Abraham, E., & Stoianov, I. (2018) Global optimality bounds for the placement of control valves in water supply networks. Optimization and Engineering.

Design for Control of WSNs

17th International Computing & Control for the Water Industry Conference

R 1st-4th September 2019 University of Exeter, UK

- Continuous variables
 - Node hydraulic heads
 - Pipe flow rates
 - Pressure control valve settings
- Discrete variables
 - Binary variables used to model the placement of valves
- Non-convex constraints
 - Frictional head losses

Non-convex Mixed Integer Nonlinear Program (MINLP)

Case studies

17th International Computing & Control for the Water Industry Conference

1st-4th September 2019 University of Exeter, UK

Optimal placement and control of 1 to 5 valves in

PescaraNet

- 365 continuous variables
- 198 binary variables
- 1591 linear constraints
- 99 non-convex terms

Net25

- 3192 continuous variables
- 74 binary variables
- 9762 linear constraints
- 88 non-convex terms

R 1st-4th September 2019 University of Exeter, UK

Comparison with solvers BARON (V18.8.23) and SCIP (v3.2.1) Max Cpu time = 7200 s

Average CPU times:

- Bound-Tightening algorihtm: 102 s
- BARON: 7200 s
- SCIP: 7200s

Large operational water network

17th International Computing & Control for the Water Industry Conference

X 1st-4th September 2019 University of Exeter, UK

BLWFnet

- 28251 continuous variables
- 2620 binary variables
- 96599 linear constraints
- 7107 non-convex terms

Numerical results

17th International Computing & Control for the Water Industry Conference

A 1st-4th September 2019 University of Exeter, UK

Max Cpu time = 86400 s (1 day)

No. of valves	CPU time (s)	LB	UB	Gap
1	3745	41.73	47.41	13.6 %
2	4803	35.19	39.31	11.6 %
3	40350	32.44	36.19	11.5 %

Bounds on optimality gap comparable to the level of uncertainty experienced within hydraulic models of operational water networks!

Conclusions

17th International Computing & Control for the Water Industry Conference

X 1st-4th September 2019 University of Exeter, UK

- Optimisation problems in WSNs are non-convex, **but the nonconvexities are mild.**
- Using polyhedral relaxations, we can build convex relaxations of the original non-convex problems.
- We implement a bound tightening method to improve the lower bounds computed solving the convex relaxations.
- The proposed method yields good quality feasible solutions, with a certified bound on the level of sub-optimality.
- Our simple approach outperforms state-of-the-art global optimisation solvers, for the considered case studies.

Thank you!

17th International Computing & Control for the Water Industry Conference

1st-4th September 2019 University of Exeter, UK

We would like to thank our sponsors:

- NEC for supporting this research as part of the project "Big Data Technologies for Smart Water Networks".
- EPSRC as part of the fellowship "Dynamically Adaptive and Resilient Water Supply Networks for a Sustainable Future".

For further information: f.pecci14@imperial.ac.uk

InfraSense Labs

NEC