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Challenges in Water Supply

Growing water demand

Climate change (drought and
flooding)

» Water supply outages and
infrastructure deterioration

Ageing infrastructure

» UK urban water
infrastructure > 100 years old

Water quality management to
protect public health and
provide assurance to customers




Water quality management

Disinfectant (e.g chlorine) residuals are critical control
variables to preserve water quality and eliminate the risks of
contamination

Water utilities aim to maintain optimal target chlorine
concentrations

» Prevent microbial contamination, without affecting water taste
and odour, or causing growth of disinfectant by-products

Optimized chlorine residuals should also avoid spatial and
temporal variations, which are perceived as water quality
problems by customers



Chlorine booster stations

P Because chlorine is reactive, it is depleted over time as it
travels across the pipe networks, causing a reduction in the
ability to prevent microbial contamination

» Optimal chlorine dosage is achieved through the operation of
chlorine booster stations, which re-apply disinfectant at
selected locations within the network




Design-for-control of chlorine booster systems

> We investigate solution methods for the problem of optimal
placement and operation of chlorine boosters

» Near real-time control requires the formulation and
implementation of appropriate control schemes, e.g. feedback
control

» In contrast, we consider a design-for-control problem, where
device locations and settings are jointly optimized over a given
time interval



Water quality modeling

A water network with n,, demand nodes, ng water sources,
and n,, links is modeled as an un-directed graph with n,, + ng
vertices and n,, edges

As common in literature on water quality optimization, our
formulation considers network hydraulic behavior as known
and fixed

The transport of chlorine residuals through each link is
governed by a linear PDE for advective transport, which we
discretize using a three-point implicit upwind scheme

Let ny be the number of discretize time steps



Problem formulation

» Continuous variables

» concentrations at nodes ¢ € R (?n+70)
» concentrations in pipes p € R3™¢"»
» additional concentrations introduced by boosters u € R™"n

» Binary variables z € {0,1}"" modeling placement of boosters
at nodes

» Given a vector of target concentrations ¢ € R™, our objective
is to minimize the cumulative target deviation:

F©) = diklein — @), (1)
i=1 k=1

where d; . is the water demand of node ¢ and time k



» Our design-for-control problem is formulated as a Mixed
Integer Quadratic Program:

minimize  f(c)
subject to Ac+ Bp+ Eu=r
u—Mz<0
172 = ny
0<c< M
0<p<p"™
0<u< cmax

z € {0,1}"".



Implementation of state-of-the-art MIP solvers

» Previous literature has formulated and solved the problem of
optimal placement of chlorine boosters as a mixed integer
program (MIP)

» However, these studies have considered small and medium size
water network models with less than a thousand nodes

> We show that state-of-the-art MIP solvers can fail to compute
a feasible solution for the considered problem when larger
water networks are considered



Case studies

Inlet 2

Inlet 2 Inlet 3

Inlet 1

(a) Pescara network model. (b) BWFLnet network model.



Pescara | BWFLnet
Ny 98 2281
Ty, 67 2221
no 3 2
# Cont. var. 10,344 270,888
# Bin. var. 67 2,221

> We formulate the design-for-control problem for
ny=20,...,10

> Target concentration at demand nodes is set to 1 mg/I,

» Maximum concentration at demand nodes and water sources
are not allowed to exceed 2 mg/I



Results with MIP solvers

Solvers CPLEX and GUROBI are implemented to directly
compute globally optimal solutions for our MIQP

We set a time limit of two hours. If a solver has not
converged to a globally optimal solution within the time limit,
we return the best feasible solution at that point.

When considering Pescara, the solvers have converged to the
same solutions for all problem instances, with global
optimality guarantees obtained only for n; < 6.

In the case of BWFLnet, CPLEX and GUROBI did not find
any feasible solution within the time limit of two hours for all
ny > 1.



Table: Optimal values and computational times reported for CPLEX and
GUROBI in Pescara. We denote with a * experiments where the solvers
did not converge to a globally optimal solution.

CPLEX GUROBI
"> "Obj. Value | Time (s) | Obj. Value | Time (s)
0 32.86 0.21 32.86 0.09
1 26.57 4.83 26.57 8.41
2 23.17 12.90 23.06 19.54
3 23.06 60.57 19.77 125.67
4 17.32 1426.02 17.32 430.72
5 15.46 2531.53 15.46 1362.69
6 13.92 5066.02 13.92 4619.59
7 12.62* 7200 12.62%* 7200
8 11.25% 7200 11.25* 7200
9 10.02* 7200 10.02* 7200
10 8.85% 7200 8.85* 7200




A convex heuristic for large water networks

> State-of-the-art MIP solvers can fail to compute feasible
solutions for the considered MIQPs when large water networks
are considered

» We investigate a heuristic algorithm based on convex
optimization to compute good quality feasible solutions

» The convex heuristic enables the optimal placement and
operation of chlorine boosters in large networks like BWFLnet



Step 1. Solve a convex relaxation

> Let z* be a solution of the following continuous convex

relaxation:
minimize  f(c)

subject to Ac+ Bp+ Eu=r
u—Mz<0
172 = ny
0<c< M
0<p<pm™
0<u< cmax
z € [0,1]"™.
> We denote by L the corresponding optimal value, which is a
lower bound for the original MIQP.



Step 2. Round

» Let Z C {1,...,n,} be the index set corresponding to the n,
largest components in z*

» Define z € {0,1}" as 2, =1 ifi € Z, and 2; = 0 otherwise.

» Compute an upper bound U(Z2) by solving the quadratic
program (QP):

minimize  f(c)

subject to Ac+ Bp+ Eu=r
u< Mz
0<c< M
0<p<p"™
0<u <M



Step 3. Swap

The algorithm starts from Z and checks booster configurations
that are obtained swapping one of the n; locations identified
by Z for one of the locations that were not selected

Each alternative booster configuration zieg: is evaluated by
solving the corresponding QP and computing U (2test)

If no swap reduces the objective function value, the algorithm
terminates.

If we find a feasible solution with a reduced objective function
value, we update Z and we start a new swapping iteration



In our implementation, we limit the maximum number of
iterations by setting Nioc = 100n,,

To reduce the number of configurations that are checked by
the algorithm, we only considers for swapping booster
locations corresponding to indices such that 0.1 < 2z < 0.9

The selected booster locations to be removed from Z are
chosen according to their corresponding z* values in
ascending order

Analogously, the booster locations to be added are selected in
descending order



Numerical tests/1

» In the case of Pescara, the convex optimization heuristic has
converged to feasible solutions that are very close to those of
GUROBI and CPLEX.
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Figure: The computed upper bounds are within 1% of the globally
optimal solutions computed by GUROBI for n;, < 6

» The computational time for the two MIP solvers is one to two
orders of magnitude longer than that of the convex heuristic.



Numerical tests/2

» Recall that, in the case of BWFLnet, CPLEX and GUROBI did
not find any feasible solution within the time limit of two
hours for all ny, > 1.
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Figure: The computed upper bounds are within 1% of the globally
optimal solutions computed by GUROBI for n;, < 6

» The longest computational time for the convex heuristic in
BWFLnet is 38 minutes.



Simulate optimized chlorine boosters

» We compare chlorine concentrations obtained solving our
MIQP with those simulated by EPANET with the optimized
chlorine injections at water sources and optimized booster
settings
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Figure: Statistics of the temporal average of the absolute differences in
chlorine concentrations

> The largest errors are experienced at nodes with very low or
zero demand
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Figure: Distribution of simulated chlorine concentrations at 20 : 00 in
BWFLnet, when four boosters are optimally located and operated.



Conclusions

The problem of optimal placement and operation of chlorine
boosters results in a MIQP, where the number of integer
decision variables grows with the size of the considered WDN

Computing globally optimal solutions requires impractical
computational effort when large WDN models are considered

We have presented a convex heuristic method to generate
feasible solutions by solving convex quadratic programs

The numerical results are promising; the algorithm has
resulted in good quality solutions for two case studies,
including a large operational water network from the UK



Thank you!

Any question?

| look forward to seeing you in London (and online!)

Contact: f.peccil4@imperial.ac.uk



