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Outline

▶ Background and motivation

▶ Problem formulation

▶ Convex optimization heuristic

▶ Numerical experiments
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Challenges in Water Supply

▶ Growing water demand

▶ Climate change (drought and
flooding)
▶ Water supply outages and

infrastructure deterioration

▶ Ageing infrastructure
▶ UK urban water

infrastructure > 100 years old

▶ Water quality management to
protect public health and
provide assurance to customers
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Water quality management

▶ Disinfectant (e.g chlorine) residuals are critical control
variables to preserve water quality and eliminate the risks of
contamination

▶ Water utilities aim to maintain optimal target chlorine
concentrations
▶ Prevent microbial contamination, without affecting water taste

and odour, or causing growth of disinfectant by-products

▶ Optimized chlorine residuals should also avoid spatial and
temporal variations, which are perceived as water quality
problems by customers
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Chlorine booster stations

▶ Because chlorine is reactive, it is depleted over time as it
travels across the pipe networks, causing a reduction in the
ability to prevent microbial contamination

▶ Optimal chlorine dosage is achieved through the operation of
chlorine booster stations, which re-apply disinfectant at
selected locations within the network
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Design-for-control of chlorine booster systems

▶ We investigate solution methods for the problem of optimal
placement and operation of chlorine boosters

▶ Near real-time control requires the formulation and
implementation of appropriate control schemes, e.g. feedback
control

▶ In contrast, we consider a design-for-control problem, where
device locations and settings are jointly optimized over a given
time interval
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Water quality modeling

▶ A water network with nn demand nodes, n0 water sources,
and np links is modeled as an un-directed graph with nn + n0

vertices and np edges

▶ As common in literature on water quality optimization, our
formulation considers network hydraulic behavior as known
and fixed

▶ The transport of chlorine residuals through each link is
governed by a linear PDE for advective transport, which we
discretize using a three-point implicit upwind scheme

▶ Let nt be the number of discretize time steps
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Problem formulation

▶ Continuous variables

▶ concentrations at nodes c ∈ Rnt(nn+n0)

▶ concentrations in pipes p ∈ R3ntnp

▶ additional concentrations introduced by boosters u ∈ Rntnn

▶ Binary variables z ∈ {0, 1}nn modeling placement of boosters
at nodes

▶ Given a vector of target concentrations c̄ ∈ Rnn , our objective
is to minimize the cumulative target deviation:

f(c) =

nn∑
i=1

nt∑
k=1

di,k(ci,k − c̄i)
2, (1)

where di,k is the water demand of node i and time k
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▶ Our design-for-control problem is formulated as a Mixed
Integer Quadratic Program:

minimize f(c)

subject to Ac+Bp+ Eu = r

u−Mz ≤ 0

1T z = nb

0 ≤ c ≤ cmax

0 ≤ p ≤ pmax

0 ≤ u ≤ cmax

z ∈ {0, 1}nn .

(2)
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Implementation of state-of-the-art MIP solvers

▶ Previous literature has formulated and solved the problem of
optimal placement of chlorine boosters as a mixed integer
program (MIP)

▶ However, these studies have considered small and medium size
water network models with less than a thousand nodes

▶ We show that state-of-the-art MIP solvers can fail to compute
a feasible solution for the considered problem when larger
water networks are considered
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Case studies

Inlet 1

Inlet 2
Inlet 3

(a) Pescara network model.

Inlet 2

Inlet 1

(b) BWFLnet network model.
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Pescara BWFLnet

np 98 2281

nn 67 2221

n0 3 2

# Cont. var. 10,344 270,888

# Bin. var. 67 2,221

▶ We formulate the design-for-control problem for
nb = 0, . . . , 10

▶ Target concentration at demand nodes is set to 1 mg/l,

▶ Maximum concentration at demand nodes and water sources
are not allowed to exceed 2 mg/l
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Results with MIP solvers

▶ Solvers CPLEX and GUROBI are implemented to directly
compute globally optimal solutions for our MIQP

▶ We set a time limit of two hours. If a solver has not
converged to a globally optimal solution within the time limit,
we return the best feasible solution at that point.

▶ When considering Pescara, the solvers have converged to the
same solutions for all problem instances, with global
optimality guarantees obtained only for nb ≤ 6.

▶ In the case of BWFLnet, CPLEX and GUROBI did not find
any feasible solution within the time limit of two hours for all
nb ≥ 1.
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Table: Optimal values and computational times reported for CPLEX and
GUROBI in Pescara. We denote with a * experiments where the solvers
did not converge to a globally optimal solution.

nb
CPLEX GUROBI

Obj. Value Time (s) Obj. Value Time (s)
0 32.86 0.21 32.86 0.09
1 26.57 4.83 26.57 8.41
2 23.17 12.90 23.06 19.54
3 23.06 60.57 19.77 125.67
4 17.32 1426.02 17.32 430.72
5 15.46 2531.53 15.46 1362.69
6 13.92 5066.02 13.92 4619.59
7 12.62* 7200 12.62* 7200
8 11.25* 7200 11.25* 7200
9 10.02* 7200 10.02* 7200
10 8.85* 7200 8.85* 7200
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A convex heuristic for large water networks

▶ State-of-the-art MIP solvers can fail to compute feasible
solutions for the considered MIQPs when large water networks
are considered

▶ We investigate a heuristic algorithm based on convex
optimization to compute good quality feasible solutions

▶ The convex heuristic enables the optimal placement and
operation of chlorine boosters in large networks like BWFLnet
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Step 1. Solve a convex relaxation

▶ Let z∗ be a solution of the following continuous convex
relaxation:

minimize f(c)

subject to Ac+Bp+ Eu = r

u−Mz ≤ 0

1T z = nb

0 ≤ c ≤ cmax

0 ≤ p ≤ pmax

0 ≤ u ≤ cmax

z ∈ [0, 1]nn .

(3)

▶ We denote by L the corresponding optimal value, which is a
lower bound for the original MIQP.
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Step 2. Round

▶ Let Z ⊆ {1, . . . , nn} be the index set corresponding to the nb

largest components in z∗

▶ Define ẑ ∈ {0, 1}nn as ẑi = 1 if i ∈ Z, and ẑi = 0 otherwise.

▶ Compute an upper bound U(ẑ) by solving the quadratic
program (QP):

minimize f(c)

subject to Ac+Bp+ Eu = r

u ≤ Mẑ

0 ≤ c ≤ cmax

0 ≤ p ≤ pmax

0 ≤ u ≤ cmax

(4)
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Step 3. Swap

▶ The algorithm starts from ẑ and checks booster configurations
that are obtained swapping one of the nb locations identified
by ẑ for one of the locations that were not selected

▶ Each alternative booster configuration ztest is evaluated by
solving the corresponding QP and computing U(ztest)

▶ If no swap reduces the objective function value, the algorithm
terminates.

▶ If we find a feasible solution with a reduced objective function
value, we update ẑ and we start a new swapping iteration
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▶ In our implementation, we limit the maximum number of
iterations by setting Nloc = 100nn

▶ To reduce the number of configurations that are checked by
the algorithm, we only considers for swapping booster
locations corresponding to indices such that 0.1 ≤ z∗i ≤ 0.9

▶ The selected booster locations to be removed from ẑ are
chosen according to their corresponding z∗ values in
ascending order

▶ Analogously, the booster locations to be added are selected in
descending order
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Numerical tests/1

▶ In the case of Pescara, the convex optimization heuristic has
converged to feasible solutions that are very close to those of
GUROBI and CPLEX.
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Figure: The computed upper bounds are within 1% of the globally
optimal solutions computed by GUROBI for nb ≤ 6

▶ The computational time for the two MIP solvers is one to two
orders of magnitude longer than that of the convex heuristic.
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Numerical tests/2

▶ Recall that, in the case of BWFLnet, CPLEX and GUROBI did
not find any feasible solution within the time limit of two
hours for all nb ≥ 1.
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Figure: The computed upper bounds are within 1% of the globally
optimal solutions computed by GUROBI for nb ≤ 6

▶ The longest computational time for the convex heuristic in
BWFLnet is 38 minutes.
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Simulate optimized chlorine boosters

▶ We compare chlorine concentrations obtained solving our
MIQP with those simulated by EPANET with the optimized
chlorine injections at water sources and optimized booster
settings
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Figure: Statistics of the temporal average of the absolute differences in
chlorine concentrations

▶ The largest errors are experienced at nodes with very low or
zero demand
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B4 Inlet 1

Inlet 2

Figure: Distribution of simulated chlorine concentrations at 20 : 00 in
BWFLnet, when four boosters are optimally located and operated.
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Conclusions

▶ The problem of optimal placement and operation of chlorine
boosters results in a MIQP, where the number of integer
decision variables grows with the size of the considered WDN

▶ Computing globally optimal solutions requires impractical
computational effort when large WDN models are considered

▶ We have presented a convex heuristic method to generate
feasible solutions by solving convex quadratic programs

▶ The numerical results are promising; the algorithm has
resulted in good quality solutions for two case studies,
including a large operational water network from the UK



25/25

Thank you!

Any question?

I look forward to seeing you in London (and online!)

Contact: f.pecci14@imperial.ac.uk


