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Challenges in water supply: growing water demand
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Challenges in water supply: climate change
(drought and flooding)

Water supply outages and infrastructure deterioration
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Challenges in water supply: ageing infrastructure

UK urban water infrastructure > a century old (Ofwat)
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Pressure management in water networks

Hydraulic pressure in pipes is a critical control variable for WSNs:

I Leakage losses

I Pipe bursts frequency
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Pressure control valves

I Control pressure at their outlets

I Advanced forms of flow and pressure modulation
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Optimal placement of control valves in WSNs

I Objective
I Minimize Average Zone Pressure (AZP)

I Continuous variables
I Node hydraulic heads
I Pipe flow rates

I Discrete variables
I Binary variables used to model the

placement of valves

I Nonconvex constraints
I Frictional energy losses within hydraulic

conservation laws

⇒ Nonconvex Mixed Integer Nonlinear Programming (MINLP)
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Problem formulation

minimize cTu

subject to fi (xi )−yi = 0, ∀i = 1, . . . ,m

Ax +By +Cu+Dz ≤ d

x ∈ Q

zj ∈ {0,1}, ∀j = 1, . . . ,n

(MINLP(Q))

I fi (·) is a nonlinear function modelling frictional energy losses

I Q is a rectangle representing variable upper and lower bounds.
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Previous approaches

Heuristics:

I Genetic algorithms

I Simulated annealing

I Harmony search

I ...

Mathematical optimisation:

I Branch and bound on binary
variables

I Penalty method

I Linear approximation

No guarantee on the global optimality of solutions
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Polyehdral relaxation for frictional energy losses
constraints
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Polyehdral relaxation for frictional energy losses
constraints

Defined by
Rixi +Eiyi ≤ ri , ∀i = 1, . . . ,m

where matrices Ri , Ei , and vector ri depend on the rectangle Q.
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Presolving : domain reduction

idea: Improve the polyhedral relaxation by solving

minimize/maximize xl

subject to Rixi +Eiyi ≤ ri , ∀i = 1, . . . ,m

Ax +By +Cu+Dz ≤ d

x ∈ Q

zj ∈ [0,1], ∀j = 1, . . . ,n

for each l = 1, . . . ,m.
output: A tightened rectangle Qtight
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Branch and bound: basic idea

goal: Find a global optimal solution for MINLP(Qtight) to within
some prescribed accuracy ε

I Define a partition Q of Qtight

I For each Q ′ ∈Q, compute lower and upper bounds on the
optimal value of MINLP(Q ′):

L(Q ′)≤ y(Q ′)≤ U(Q ′))

I If minQ ′∈QU(Q ′)−minQ ′∈Q L(Q ′) < ε, quit

I else, refine partition Q and repeat
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Ingredients for branch and bound

The algorithm needs

I methods to compute lower and upper bounds

I strategy to select the next region to split

I rule for choosing how to split
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Lower bound

Given Q ′ ∈Q, a lower bound is computed solving

minimize cTu

subject to Rixi +Eiyi ≤ ri , ∀i = 1, . . . ,m

Ax +By +Cu+Dz ≤ d

x ∈ Q ′

zj ∈ {0,1}, ∀j = 1, . . . ,n

(MILP(Q ′))

Let (x̂ , ŷ , û, ẑ) be the solution of MILP(Q ′)
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Upper bound

Given Q ′ ∈Q, an upper bound is computed solving

minimize cTu

subject to fi (xi )−yi = 0, ∀i = 1, . . . ,m

Ax +By +Cu ≤ d −Dẑ

x ∈ Q ′

(NLP(Q ′))
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Ingredients for branch and bound

The algorithm needs

I methods to compute lower and upper bounds X

I strategy to select the next region to split

I rule for choosing how to split
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Branching strategy

I Select the rectangle Qb ∈Q with the best lower bound, i.e.

L(Qb) = min
Q ′∈Q

L(Q ′)

I Split Qb at x̂ , along coordinate k corresponding to the largest
error

|fk(x̂k)− ŷk |= max
i=1,...,m

|fi (x̂i )− ŷi |



21/27

Ingredients for branch and bound

The algorithm needs

I methods to compute lower and upper bounds X

I strategy to select the next region to split X

I rule for choosing how to split X
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Case studies

Optimal placement of 1 to 5 pressure control valves in

I PescaraNet
I 365 cont. var.
I 198 bin. var.
I 1591 lin. constr.
I 99 nonconvex terms

I Net25
I 3192 cont. var.
I 74 bin. var.
I 9762 lin. constr.
I 888 nonconvex terms
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Numerical results
Comparison with solvers BARON (v18.8.23) and SCIP (v3.2.1).
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Large operational water network

Optimal placement of 1 to 5 pressure control valves in

I BWFLnet
I 28251 cont. var.
I 2620 bin. var.
I 96599 lin. constr.
I 7107 nonconvex

terms
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Numerical results

nv Time (s) No. Iter. LB (m) UB (m) Gap(%)

1 86400 783 42.48 47.41 11.61

2 86400 29 35.54 39.31 10.62

3 86400 1 32.44 36.19 11.58

4 > 86400 - - - -

5 > 86400 - - - -

Table: Optimization results on BWFLnet (86400s = 1day)
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Thank you!

We would like to thank NEC for supporting this research as part of
the NEC-Imperial “Big Data Technologies for Smart Water
Networks” project.

We thank all the dedicated team members in the collaborative
partnership from InfraSense Labs (Imperial College), Bristol Water,
Cla-Val and NEC.
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