# A branch and bound method for globally optimising valve locations in water distribution networks

### Filippo Pecci $^{1},$ Edo Abraham $^{2}$ and Ivan Stoianov $^{1}$

<sup>1</sup>Department of Civil and Environmetal Engineering, Imperial College London

<sup>2</sup>Faculty of Civil Engineering and Geosciences, TU Delft

# Outline

### Introduction

Problem definition

Global optimization framework

Numerical experiments

Challenges in water supply: growing water demand



### Imperial College London Challenges in water supply: climate change (drought and flooding)

### Water supply outages and infrastructure deterioration



Challenges in water supply: ageing infrastructure

UK urban water infrastructure > a century old (Ofwat)



### Pressure management in water networks

Hydraulic pressure in pipes is a critical control variable for WSNs:

- Leakage losses
- Pipe bursts frequency



### Pressure control valves

- Control pressure at their outlets
- Advanced forms of flow and pressure modulation



### Outline

### Introduction

Problem definition

Global optimization framework

Numerical experiments

#### 9/27

#### Imperial College London

# Optimal placement of control valves in WSNs

- Objective
  - Minimize Average Zone Pressure (AZP)
- Continuous variables
  - Node hydraulic heads
  - Pipe flow rates
- Discrete variables
  - Binary variables used to model the placement of valves
- Nonconvex constraints
  - Frictional energy losses within hydraulic conservation laws
- $\Rightarrow$  Nonconvex Mixed Integer Nonlinear Programming (MINLP)



# Problem formulation

$$\begin{array}{ll} \text{minimize} & c^T u \\ \text{subject to} & f_i(x_i) - y_i = 0, \quad \forall i = 1, \dots, m \\ & Ax + By + Cu + Dz \leq d \\ & x \in Q \\ & z_j \in \{0, 1\}, \quad \forall j = 1, \dots, n \end{array}$$
 (MINLP(Q))

*f<sub>i</sub>*(·) is a nonlinear function modelling frictional energy losses *Q* is a rectangle representing variable upper and lower bounds.

# Previous approaches

### Heuristics:

▶ ...

- Genetic algorithms
- Simulated annealing
- Harmony search

### Mathematical optimisation:

- Branch and bound on binary variables
- Penalty method
- Linear approximation

### No guarantee on the global optimality of solutions

### Outline

Introduction

Problem definition

Global optimization framework

Numerical experiments

### Imperial College London Polyehdral relaxation for frictional energy losses constraints



### Imperial College London Polyehdral relaxation for frictional energy losses constraints



Defined by

$$R_i x_i + E_i y_i \leq r_i, \quad \forall i = 1, \dots, m$$

where matrices  $R_i$ ,  $E_i$ , and vector  $r_i$  depend on the rectangle Q.

# Presolving : domain reduction

idea: Improve the polyhedral relaxation by solving

 $\begin{array}{ll} \mbox{minimize}/\mbox{maximize} & x_{l} \\ \mbox{subject to} & R_{i}x_{i}+E_{i}y_{i} \leq r_{i}, \quad \forall i=1,\ldots,m \\ & Ax+By+Cu+Dz \leq d \\ & x \in Q \\ & z_{j} \in [0,1], \quad \forall j=1,\ldots,n \end{array}$ 

for each l = 1, ..., m. **output:** A tightened rectangle  $Q^{\text{tight}}$ 

# Branch and bound: basic idea

**goal:** Find a global optimal solution for  $MINLP(Q^{tight})$  to within some prescribed accuracy  $\varepsilon$ 

- Define a partition  $\mathscr{Q}$  of  $Q^{\text{tight}}$
- For each Q' ∈ 2, compute lower and upper bounds on the optimal value of MINLP(Q'):

 $L(Q') \leq y(Q') \leq U(Q'))$ 

- ► If  $\min_{Q' \in \mathscr{Q}} U(Q') \min_{Q' \in \mathscr{Q}} L(Q') < \varepsilon$ , quit
- else, refine partition  $\mathcal Q$  and repeat

# Ingredients for branch and bound

The algorithm needs

- methods to compute lower and upper bounds
- strategy to select the next region to split
- rule for choosing how to split

### Lower bound

Given  $Q' \in \mathcal{Q}$ , a lower bound is computed solving

$$\begin{array}{ll} \text{minimize} & c^T u \\ \text{subject to} & R_i x_i + E_i y_i \leq r_i, \quad \forall i = 1, \dots, m \\ & Ax + By + Cu + Dz \leq d \\ & x \in Q' \\ & z_j \in \{0,1\}, \quad \forall j = 1, \dots, n \end{array}$$
 (MILP(Q'))

Let  $(\hat{x}, \hat{y}, \hat{u}, \hat{z})$  be the solution of MILP(Q')

# Upper bound

Given  $Q' \in \mathscr{Q}$ , an upper bound is computed solving minimize  $c^T u$ subject to  $f_i(x_i) - y_i = 0, \quad \forall i = 1, ..., m$   $Ax + By + Cu \le d - D\hat{z}$  $x \in Q'$ (NLP(Q'))

# Ingredients for branch and bound

The algorithm needs

- $\blacktriangleright$  methods to compute lower and upper bounds  $\checkmark$
- strategy to select the next region to split
- rule for choosing how to split

# Branching strategy

▶ Select the rectangle  $Q^b \in \mathscr{Q}$  with the best lower bound, i.e.

$$L(Q^b) = \min_{Q' \in \mathscr{Q}} L(Q')$$

Split Q<sup>b</sup> at x̂, along coordinate k corresponding to the largest error

$$|f_k(\hat{x}_k) - \hat{y}_k| = \max_{i=1,...,m} |f_i(\hat{x}_i) - \hat{y}_i|$$

# Ingredients for branch and bound

The algorithm needs

- $\blacktriangleright$  methods to compute lower and upper bounds  $\checkmark$
- $\blacktriangleright$  strategy to select the next region to split  $\checkmark$
- rule for choosing how to split

### Outline

Introduction

Problem definition

Global optimization framework

Numerical experiments

# Case studies

Optimal placement of 1 to 5 pressure control valves in

- PescaraNet
  - 365 cont. var.
  - 198 bin. var.
  - 1591 lin. constr.
  - 99 nonconvex terms

- ► Net25
  - 3192 cont. var.
  - 74 bin. var.
  - 9762 lin. constr.
  - 888 nonconvex terms





### Numerical results

Comparison with solvers BARON (v18.8.23) and SCIP (v3.2.1).



### Large operational water network

Optimal placement of 1 to 5 pressure control valves in

### BWFLnet

- 28251 cont. var.
- 2620 bin. var.
- 96599 lin. constr.
- 7107 nonconvex terms



### Numerical results

| n <sub>v</sub> | Time (s) | No. Iter. | LB (m) | UB (m) | Gap(%) |
|----------------|----------|-----------|--------|--------|--------|
| 1              | 86400    | 783       | 42.48  | 47.41  | 11.61  |
| 2              | 86400    | 29        | 35.54  | 39.31  | 10.62  |
| 3              | 86400    | 1         | 32.44  | 36.19  | 11.58  |
| 4              | > 86400  | -         | -      | -      | -      |
| 5              | > 86400  | -         | -      | -      | -      |

Table: Optimization results on BWFLnet (86400 s = 1 day)



# Thank you!

We would like to thank NEC for supporting this research as part of the NEC-Imperial "Big Data Technologies for Smart Water Networks" project.

We thank all the dedicated team members in the collaborative partnership from InfraSense Labs (Imperial College), Bristol Water, Cla-Val and NEC.



For further information

f.pecci14@imperial.ac.uk