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System of non-linear equations

We consider a system governed by a set of non-linear equations:

F (x ,θ) = 0 (1)

where x ∈ Rn represent system states and θ ∈Θ⊆ Rp the
parameters.

I F : Rn×Rp→ Rm continuously differentiable function

I For every θ ∈Θ, there exist a unique x(θ) such that
F (x(θ),θ) = 0, and we can compute it using simulation tools.

I Θ is a convex set.
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Non-linear inverse problems

Objective: given some measurements of the system states,
estimate parameters θ .

minimize
x ,θ

l(x) +g(θ)

subject to F (x ,θ) = 0

θ ∈Θ

(2)

where l : Rn→ R is a convex loss function, and g : Rp→ R is a
convex regularizer.
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Some examples

I Examples of convex loss functions include:
I l(x) = ‖Ax−b‖22 (least squares)
I l(x) = ‖Ax−b‖1 (robust estimation)
I l(x) = ‖Ax−b‖∞ (Chebyshev approximation)
I l(x) =

∑m
i=1 ψhub((Ax−b)i ), with

ψhub(z) =

®
z2 |z | ≤M

M(2|z |−M) |z |>M

(Huber loss function)
I others: deadzone linear, log barrier...

I Examples of convex regularization functions include:
I g(θ) = ‖θ‖22 (Tikhonov)
I g(θ) = ‖θ‖1 (Lasso)
I ...
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Problem reformulation

Let φ : Rp→Rn be a continuously differentiable function such that

F (φ(θ),θ) = 0.

We can reformulate the considered inverse problem as:

minimize
θ

l(φ(θ)) +g(θ)

subject to θ ∈Θ
(3)
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minimize
θ

l(φ(θ)) +g(θ)

subject to θ ∈Θ
(4)

I φ(·), is evaluated by a numerical iterative scheme.

I Functions l(·) and g(·) are convex and non-smooth.

Solution methods:

I Can be solved using regularization techniques, e.g. proximal
methods [Lewis and Wright,2016].

I We consider a trust region method, which naturally handles
box constraints on the parameters.
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Sequential convex optimization

Iterative solution algorithm, at each step we:

I convexify the non-linear system model φ(·);

I solve the resulting convex problem within a trust region.

Given an iterate θk , a new trial iterate θ+ is obtained solving:

minimize
θ

l(φ(θk) +Jk(θ −θk)) +g(θ)

subject to ‖θ −θk‖∞ ≤∆k

θ ∈Θ

(5)

where Jk is the Jacobian matrix of φ(·) evaluated at θk .
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I At each iteration, we need to solve the adjoint equation:

∂F (φ(θk),θk)

∂x
Jk +

∂F (φ(θk),θk)

∂θ
= 0 (6)

I Computing the full Jacobian matrix Jk would require a
significant computational effort when large systems are
considered.
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We introduce auxiliary variables x ∈Rn and reformulate the convex
sub-problem as

minimize
x ,θ

l(x) +g(θ)

subject to x = φ(θk) +Jk(θ −θk)

‖θ −θk‖∞ ≤∆k

θ ∈Θ

(7)
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The convex sub-problem is equivalently reformulated as

minimize
x ,θ

l(x) +g(θ)

subject to
∂Fk
∂x

(x−xk) +
∂Fk
∂θ

(θ −θk) = 0

‖θ −θk‖∞ ≤∆k

θ ∈Θ

(8)

where Fk := F (φ(θk),θk) and xk := φ(θk).

The proposed reformulation is particularly convenient when
matrices ∂Fk

∂x and ∂Fk
∂θ

are large and sparse.
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Trust region based sequential convex optimization

1: Initialization: η = 0.01, γ = 1.1, α = 0.5,
2: Select θ0 and ∆0 and set x0 = φ(θ0);
3: repeat
4: Trial iterate computation. Solve the convex sub-problem

at (xk ,θk), let (x+,θ+) be the computed solution;
5: Acceptance of trial iterate. Let

ρk =
l(xk) +g(θk)− l(φ(θ+))−g(θ+)

l(xk) +g(θk)− l(x+)−g(θ+)
; (9)

If ρk ≥ η then θk+1 = θ+, xk+1 = φ(θ+), ∆k+1 = γ∆k

6: else θk+1 = θk , xk+1 = xk , and ∆k+1 = α∆k ;
7: until Termination criteria are met
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Head loss faults in water networks

I Water networks are equipped with an
increasing level of instrumentation,
like pressure control valves and
isolation valves.

I Unreported changes to status or
location of partially/fully closed
valves results in discrepancies
between hydraulic model predictions
and real system states.
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Previous literature

I Previously published approaches to identify head loss faults
relied on genetic algorithms.

I These methods are not suitable for real-time implementation
in fault diagnostic applications. As example, Do et al. (2018)
reported an overall CPU time of more than 4 hours on a small
benchmarking network.

I We propose an optimization-based estimation method for
real-time fault detection and localization.

Do, N.C., Simpson, A.R., Deuerlein, J.W., and Piller, O. (2018) Locating Inadvertently Partially Closed Valves in

Water Distribution Systems. Journal of Water Resources Planning and Management, 144 (8), 04018039. Available

from: doi:10.1061/(asce)wr.1943-5452.0000958.
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Faults modelling

Energy conservation laws:

hi1−hi2− rj(qj)qj = fj , ∀i1
j−→ i2 (10)

I Non-linear function rj(·)
depends on the frictional
head loss formula used.

I The term fj is used to model
a fault on link j , e.g. pipe
blockage or unknown valve
status.
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Mass conservation law

∑
j∈I in(i)

qj −
∑

j∈I out(i)
qj = di (11)

where di represents the demand at node i , which is estimated
based on billing/historical data.

di
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Network conservation laws

Energy and mass conservation laws are expressed in a more
compact form as

A11(q)q+A12h+A10h0 + f = 0 (12)

AT
12q = d (13)

where

I q ∈ Rnp is the vector of unknown flows

I h ∈ Rnn is the vector of unknown hydraulic heads

I f ∈ Rnp is the vector of unknown faults

I d ∈ Rnn is the vector of known demands

I h0 ∈ Rn0 is the vector of known hydraulic heads
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Sparsity-based fault estimation

We assume that most of the potential faults are not presented at
the same time:

‖f ‖0 ≤ δ (14)

However, the inclusion of a cardinally constraint would result in
additional non-convexities.

We consider a convex relaxation based on the `1 norm.
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Inverse problem formulation

We formulate the problem of head loss fault estimation as

minimize
q,h,f

1

2
‖Bh− ĥ‖22 +

1

2
‖Cq− q̂‖22 + λ‖f ‖1

subject to A11(q)q+A12h+A10h0 + f = 0

AT
12q = d

(15)

where

I B ∈ Rnt×nn and C ∈ Rns×np be sensor-node and sensor-link
selection matrices, respectively.

I ĥ ∈ Rnt is the vector of measured hydraulic heads

I q̂ ∈ Rns is the vector of measured flows
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I Given a vector of faults f ∈ Rnp , there exists a unique pair
q(f ) and h(f ) satisfying hydraulic conservation laws (Collins,
1978).

I The vector of hydraulic states that solves the network
conservation laws is computed using tailored numerical
schemes.

Collins, M. and Cooper, L. (1978) Solving the pipe network analysis problem using optimization techniques.

Management Science. 24 (7), 747–760
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Non-linear least squares with `1 regularization:

minimize
f

1

2
‖Bh(f )− ĥ‖22 +

1

2
‖Cq(f )− q̂‖22 + λ‖f ‖1 (16)

We apply the sequential convex optimization algorithm: at each
step k , solve:

minimize
q,h,f

1

2
‖Bh− ĥ‖22 +

1

2
‖Cq− q̂‖22 + λ‖f ‖1

subject to A11(qk)qk +G (qk)(q−qk) +A12h+A10h0 + f = 0

AT
12q = d

‖f − fk‖∞ ≤∆k

(17)
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Computational experience

I Trust region initial radius ∆0 = 20, and initial point f0 = 0;

I the `1 penalty parameter is set to λ = 0.01;

I all experiments are conducted in MATLAB and the convex
sub-problems within the sequential convex optimization
algorithm are reformulated as quadratic programs and solved
using GUROBI.
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Case study - BWFLnet

The developed method is implemented to estimate head loss faults
occurring in BWFLnet, the hydraulic model of a large operational
water network from the UK operated by Bristol Water, Cla-Val,
and Imperial College London.

I ∼ 8000 customers

I 2606 pipes

I 545 valves

I 2546 nodes

I 27 pressure
sensors

Sensor

Boundary valve

Pressure control valve

Figure: BWFLnet
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Case study - Simulated data

I We generate flow and hydraulic head measurements by
simulating the water network model under different fault
scenarios.

I Simulated faults correspond to partially/fully closed valves
whose locations and status are unknown.

(a) Experiment 1. (b) Experiment 2.
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Multiple faults - Experiment 1

CPU time = 1.12 s
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Multiple faults - Experiment 2

CPU time = 0.87 s
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Case study - Experimental data

I The boundary valves are closed at 03:00 am.
I We assume that they are both open and attempt to recover

their correct status.
I Measurements from the boundary valves are ignored.
I Measurements from the remaining locations are collected and

the fault estimation problem is formulated and solved.
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CPU time: 2.7 s
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(k) Estimated fault state. (l) Localization performance.
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Conclusion

I We have presented a sequential convex optimization approach
for solving inverse problems subject to non-linear equations.

I The developed algorithm has enabled the implementation of
optimization-based fault estimation methods for water
networks.

I The preliminary computational experience suggest that the
proposed method is suitable for implementation in real time
fault diagnosis applications.

I Further work should investigate ability of the algorithm to
solve inverse problems where parameters and system states
are coupled in time.
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